Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Br J Haematol ; 199(5): 679-687, 2022 12.
Article in English | MEDLINE | ID: covidwho-2277554

ABSTRACT

Patients with severe aplastic anaemia (SAA) are often not vaccinated against viruses due to concerns of ineffective protective antibody response and potential for pathogenic global immune system activation, leading to relapse. We evaluated the impact of COVID-19 vaccination on haematological indices and disease status and characterized the humoural and cellular responses to vaccination in 50 SAA patients, who were previously treated with immunosuppressive therapy (IST). There was no significant difference in haemoglobin (p = 0.52), platelet count (p = 0.67), absolute lymphocyte (p = 0.42) and neutrophil (p = 0.98) counts prior to and after completion of vaccination series. Relapse after vaccination, defined as a progressive decline in counts requiring treatment, occurred in three patients (6%). Humoural response was detectable in 90% (28/31) of cases by reduction in an in-vitro Angiotensin II Converting Enzyme (ACE2) binding and neutralization assay, even in patients receiving ciclosporin (10/11, 90.1%). Comparison of spike-specific T-cell responses in 27 SAA patients and 10 control subjects revealed qualitatively similar CD4+ Th1-dominant responses to vaccination. There was no difference in CD4+ (p = 0.77) or CD8+ (p = 0.74) T-cell responses between patients on or off ciclosporin therapy at the time of vaccination. Our data highlight appropriate humoural and cellular responses in SAA previously treated with IST and true relapse after vaccination is rare.


Subject(s)
Anemia, Aplastic , COVID-19 , Humans , Anemia, Aplastic/drug therapy , Cyclosporine/therapeutic use , COVID-19 Vaccines/therapeutic use , SARS-CoV-2 , Immunosuppressive Agents/therapeutic use , COVID-19/prevention & control , Recurrence , Immunity , Vaccination
2.
Nat Commun ; 13(1): 7733, 2022 12 14.
Article in English | MEDLINE | ID: covidwho-2160214

ABSTRACT

An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. However, the basis for such cross-protection at the molecular level is incompletely understood. Here, we characterized the repertoire and epitope specificity of antibodies elicited by infection with the Beta, Gamma and WA1 ancestral variants and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a method to obtain immunoglobulin sequences with concurrent rapid production and functional assessment of monoclonal antibodies from hundreds of single B cells sorted by flow cytometry. Infection with any variant elicited similar cross-binding antibody responses exhibiting a conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may account for the continued efficacy of vaccines based on a single ancestral variant.


Subject(s)
COVID-19 , Immunoglobulin Variable Region , Humans , Epitopes/genetics , SARS-CoV-2/genetics , Clone Cells , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
3.
Science ; 373(6556)2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1559379

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per milliliter; IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antigen-Antibody Reactions , COVID-19/virology , Humans , Immune Evasion , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Mutation , Neutralization Tests , Protein Domains , Receptors, Coronavirus/antagonists & inhibitors , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL